Fire Inspector Level 1 & II Chapter 11 – Electrical and HVAC Hazards – Part 1

Fire Inspector I & II

CHAPTER ELEVEN ELECTRICAL AND HVAC HAZARDS

Part 1

Slide 1	Welcome to Chapter 11, Electrical and HVAC Hazards.
	This Chapter has been divided into two parts. In Part One we will discuss:
	An overview of electrical energy and electrical systems
	Some information about basic electricity
	The components of an electrical system
	Potential electrical hazards and common problems
	• Electrical systems protection devices including fuses, circuit breakers
Slide 2	A basic understanding electrical theory requires knowledge of four concepts:
	potential energy or voltage, electron flow or current, opposition to current
	flow or resistance and rate of work being done or energy released, Power.
Slide 3	Let's begin with voltage.
Slide 4	In order to explain what potential energy or voltage is, it is important to
	consider: the nature of charged particles and the structure of matter.
Slide 5	Charged partials behave according to the law of attraction or electrical
	attraction which states opposite charges attract
Slide 6	And like charges repel.
Slide 7	All matter can be broken down to the atomic scale. The atom is made up of a
	nucleus that contains positively charged protons and neutrons which have no
	charge with negatively charged electrons that orbit the nucleus.
Slide 8	The outer most orbit is called the valence orbit. The electrons in this orbit are
	referred to as valence electrons. There are up to eight valance electrons on
	any given atom. If an atom that gives up an electron it becomes more
	positively charged.
Slide 9	It is possible for materials to have surplus electrons that is electrons that are
	free to move around. Since electrons are negatively charged, the material is
	considered to have a net negative charge as seen on the left. On the right is
	material that is deficient in electrons and will accept them. This makes this
	material more positive with respect to the net negative material.
	Due to the force of attraction between negative and positive there is a force or
	pressure called electromotive force (EME) that is present. This is described as
	potential difference and is measured in Volts. Shown here is a voltmeter
	indicating the potential difference between the two materials as 6 Volts.
	(Represented mathematically as V or E.)
Slide 10	There are many ways of producing a potential difference or voltage. Common
	methods include the battery which achieves a potential difference using
	chemicals.
Slide 11	Electromagnetic induction through which a potential difference is produced by
	passing a conductor through a magnetic field.

Fire Inspector Level 1 & II Chapter 11 – Electrical and HVAC Hazards – Part 1

Slide 12	And static builds up, this can occur in many ways, but friction is usually
	involved. When two materials are rubbed together electrons can be stripped
	from one object and transferred to the other creating a potential difference.
	Static builds up can occur just by wind blowing over a flagpole or liquid being
	transferred between containers.
Slide 13	Machines that convert mechanical energy to electrical energy magnetically are
	called generators or alternators.
Slide 14	Under the right circumstances an electron can be passed from the valance
	orbit of one atom to the valance orbit of another.
Slide 15	Materials made up of atoms that easily allow for electrons transfer from on
	atom to the next are referred to as conductors or wires. Common conductors
	for use in the electrical trade include copper and aluminum.
Slide 16	If a conductor is connected across a potential difference electron will flow
	along the conductor from negative to positive. This flow of electrons is
	referred to as current flow.
Slide 17	Current flow is expressed in amperes or amps and is proportional to the
	number of electrons flowing through the conductor. The value of ampacity this
	conductor carries is indicated on the ammeter as one amp.
Slide 18	This means that if the number of electrons flowing along the conductor were
	to double, the ampacity would also double.
Slide 19	Resistance is the opposition to current flow. All practical conductors possess
	some resistance. Electrical resistance is related to how easily materials atoms
	allow for the transfer of electrons. Different conductors have different values
	of resistance. Copper tends to conduct more easily than aluminum.
Slide 20	A jacket or insulation is usually added to the outside of a conductor to prevent
	stray or unwanted current flow.
	Jackets or insulation are made of materials whose atoms that do not allow for
	the transfer of electrons.
Slide 21	A resistor is a material formed of some atoms that easily allow for the transfer
	of electrons and some atoms that do not. The result is a material that limits
	electrical current flow.
Slide 22	Electrical power equals the ability to do work.
	As current flows through a resistor collision between free and fixed electrons
	release energy often in the form of heat, light, or mechanical motion. This
	release of energy is called power and is expressed in watts.
Slide 23	Let's review, Potential Difference is the force or push behind electron flow,
	measured in volts. Current or electron flow is the movement of electrons along
	a conductor, measured in amps. Resistance is the opposition to current flow,
	measured in ohms. Power is the energy released often as heat, light, or
	mechanical motion.

Slide 24	A common analogy that compares the basic components of an electrical
	system to a closed hydraulic system. In this comparison a pump would be the
	equivalent of a generator, the voltage would be represented by the hydraulic
	system pressure, electrons would be akin to the water or liquid in the system
	and current flow would equate to the movement of the water. Friction in the
	hydraulic system would represent electrical resistance and the size of a pipe or
	hose would be similar to conductor size.
Slide 25	Electricity is provided to a building via service conductors connected to the
	utility supply. Electricity passes through the electrical meter to the panel or
	breaker box and terminate to the main overcurrent device. The main
	overcurrent device is a fuse or circuit breaker.
	Electricity is distributed by the breaker box to the internal wiring of the
	building via additional overcurrent devices. The system ground and bonding
	conductors bring all non-current carrying metal parts and ground to the same
	potential to reduce shock hazard and provide a path for current flow in the
	event of these parts become energized facilitating the operation of over
	current devices. And finally, the grounding electrode connects the system
	grounding conductor to earth.
Slide 26	A basic electrical circuit consists of a voltage source, conductors, or wires to
	enable current flow, a load to do work such as a light bulb, and a means of
	control such as a switch.
Slide 27	When the switch is open no current flow is present in the circuit as indicated
	by the ammeter as 0 amps, so the bulb is off.
Slide 28	If the switch is closed current will flow through the circuit. The value of which
	is limited only by the resistance of the bulb and is indicated on the ammeter as
	4 amps.
Slide 29	Current will follow the path of least resistance, if a path of low resistance was
	introduced around the resistance of this light bulb, current would spike.
	Current flow would only be limited by the small amount of resistance offered
	by the conductors and the source itself, let's say it limited to 1000A.
	If over current devices weren't present or failed to operate the conductors
	could get so hot that they melt. This condition is known as a short circuit.
Slide 30	Another cause of a conductor carrying too much current is an overload
	situation. This occurs when too many loads or a load that draws too much
	ampacity is connected to a circuit. When higher than rated current flows
	through a circuit, heating of the branch circuit feeder conductors or the branch
	circuit conductors occurs.
Slide 31	Assuming each load draws 4 amps observe the change in ampacity on each
	conductor as load is added to the circuit.

Slide 32	With each additional load the ampacity carried by the conductors increases,
	this causes the conductors to heat up.
Slide 33	As the load on the branch circuit continues to increase so does the heat
	generated by the conductors.
Slide 34	As the current flowing approaches, the rating of the circuit conductors
	significant heat is produced.
Slide 35	When too much load is added the conductors will overheat. If this condition is
	allowed to persist the conductors can produce enough heat to damage the
	conductor's insulation or subject any material surrounding the conductor to
	excessive heat.
Slide 36	Another typical overload scenario is the when too many loads are plugged in at
	one outlet, this can prove to be significantly dangerous. This is a common
	problem during the holidays when outlets and extension cords can be
	overexerted to supply decorations and lighting displays.
	Over loading of a conductor can also result from conductor damage.
	Conductors can be damaged before, during or after installation.
Slide 37	One of the factors in a conductor's ability to carry current is its cross-sectional
	area. When damage reduces the cross-sectional area the conductor, its ability
	to carry current is compromised at the point of damage, resulting in a localized
	hot spot.
Slide 38	Another common source of heat in an electrical system is an arc. Series
	electrical arcs are produced when there is a small gap in a wire or at a
	termination. An arc is produced by electrons jumping the gap. Parallel arcs
	occur between an electrified and a grounded surface or between two
	conductors. Arc's produce high temperatures and can disperse molten metal
	from the conductor igniting flammable material hearby.
	Some electrical equipment produces arcing under normal operation such as
	switches, contacts, and motors that possess brushes, arcing can increase to
	dangerous levels as a result of equipment wear. Arc producing equipment
	must be contained when installed in ignitable atmospheres.
Slide 39	Overcurrent devices such as fuses, and circuit breakers are installed to limit
	the amount of current drawn by a circuit or system. Fuses and circuit breakers
	come in many ampacity ratings and automatically open the circuit and
	disconnect it from the source of supply when current ampacity exceeds the
	rating.
Slide 40	Fuses have an internal element or fuse link that melts open to disconnect the
_	circuit when excessive current is flowing. The speed at which they trip is
	proportional to the current flow through the fuse element, therefor the higher
	the current the faster the response time.

	Fuses come in a variety of designs, the most common are the plug fuse and
	cartridge fuse. Both types come in a time delay or quick acting variety. A time
	delay fuse is used for devices such as motors that draw higher than normal
	current for a short period of time upon start up.
	Most fuses are one time use; however, some cartridge fuses are renewable.
	That is to say the fuse element can be replaced. Selection and servicing of
	renewable fuse links should always be done by a qualified individual such as an
	electrician.
Slide 41	Circuit breakers use various technologies to trip a latch which opens the
	circuit. For this reason, they are resettable, however each time a breaker
	operates automatically due to a high current event the attributes of the circuit
	breaker may change, field testing of circuit breakers is not possible and if the
	integrity of the circuit breaker is suspect it should be replaced by a qualified
	electrician. Basic circuit breakers provide overload, and over current
	protection.
	An overlead is a moderate increase in current sustained over a period of time
	and a overcurrent is a ranid and large increases in current as an example a
	short circuit would be an overcurrent event.
Slide 42	AFCI's or arc fault circuit interrupters use electronic circuitry to detect the
	signature of an arc fault. Upon detection the circuit breakers latch would then
	be tripped opening the circuit. AFCI's also provide overload and overcurrent
	protection. AFCI receptacles are also available but will only detect arc faults
	and disconnect circuitry downstream from the receptacle.
Slide 43	GFCI's or ground fault circuit interrupters use electronic circuitry to detect
	unwanted current flow outside of the normal path, usually to ground. Upon
	detection the circuit breaker would then be tripped, opening the circuit. GFCI's
	also provide overload and overcurrent protection. GFCI receptacles are also
	available but will only detect ground faults and disconnect circuitry
	downstream from the receptacle.
	Primarily GECI's are used to protect life and are generally installed in wet or
	damp locations, such as in bathrooms and kitchens near sinks and outdoors on
	receptacles or heat trace/tape installations that prevent freezing of pipes and
	drains. GFCI's also come as equipment ground fault protective devices
	(EGFPD's) the main difference is the amount of current deviation is required to
	trip the device. EGFPD's are generally used for commercial or industrial
	applications of heat trace/tape or de-icing and snow melting.
Slide 44	In this Part we discussed:
	Basics of electricity

Fire Inspector Level 1 & II Chapter 11 – Electrical and HVAC Hazards – Part 1

	The law of electrical attraction states that opposites attract and like
	charges repol
	 A charge of static electricity usually involves friction
	 Machines that convert mechanical energy to electrical energy
	magnetically are called generators or alternators
	 Voltage is the force behind the flow of electrons
	 Current is the flow of electrons and is expressed in amps
	 Resistance is the opposite to current flow and is a source of heat
	 Power is the release of energy measured in Watts
Slide 45	We discussed:
	 How electricity is provided to a building through service conductors
	through the meter base and on to the main panel
	Components & operation of an electrical circuit
	 Short circuits and overloads can result in excessive heating
	 Some electrical equipment produces arcing under normal operation
	 Damaged conductors can result in a localized hot spot
	And we finished this part with a discussion on over current devices like
	fuses, circuit breakers, and ground fault circuit interrupters
Slide 46	Please move on to part 2.